

PAYLOAD FAIRINGS

This mission will utilize the standard PLF-BR-15255 commercial payload fairing which is 4.1 meters in diameter and 15.255 meters in length. The PLF encapsulates the satellite along with the Breeze M upper stage to provide protection from the dense atmosphere for the first 5 minutes and 47 seconds after launch.

BREEZE M UPPER STAGE

The Breeze M is powered by one pump-fed gimbaled main engine that develops thrust of 20 kN (4,500 lbf). It is composed of a central core and an auxiliary propellant tank which is jettisoned in flight following depletion. The Breeze M control system includes an on-board computer, a three-axis gyro stabilized platform, and a navigation system. The quantity of propellant carried is dependent on specific mission requirements and is varied to maximize mission performance.

PROTON BOOSTER

The Proton booster consists of three stages (described below). The overall height of the three stages of Proton is 42.3 meters (138.8 ft).

Third Stage

Powered by one RD-0213 engine, this stage develops thrust of 583 kN (131,000 lbf), and a four-nozzle vernier engine that produces thrust of 31 kN (7,000 lbf). Guidance, navigation, and control of the Proton M during operation of the first three stages is carried out by a triple redundant closed-loop digital avionics system mounted in the Proton's third stage.

Second Stage

Of conventional cylindrical design, this stage is powered by three RD-0210 engines plus one RD-0211 engine and develops a vacuum thrust of 2.4 MN (540,000 lbf).

First Stage

The first stage consists of a central tank containing the oxidizer surrounded by six outboard fuel tanks. Each fuel tank also carries one of the six RD-276 engines that provide first stage power. Total first stage vacuum-rated level thrust is 11.0 MN (2,500,000 lbf).

The Proton and the Breeze M are built by Khrunichev State Research and Production Space Center.

Satellite

SATELLITE OPERATOR

Asiasat www.asiasat.com

SATELLITE MANUFACTURER

SSL

www.sslmda.com

PLATFORM


SSL 1300

SEPARATED MASS

6140 kg

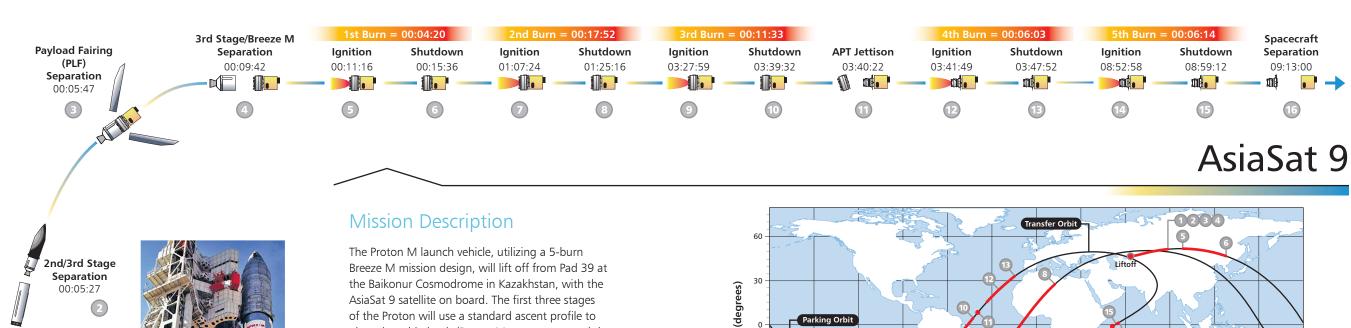
SATELLITE DESIGN LIFETIME

15+ Years

SATELLITE MISSION

AsiaSat 9 is AsiaSat's most powerful satellite designed with enhanced performance, higher efficiency and greater flexibility for DTH, video distribution, VSAT broadband and mobility services. AsiaSat 9 is a replacement satellite for AsiaSat 4 at 122°E with 28 C-band and 32 Ku-band transponders, and a regional Ka-band payload. It carries the world's first dedicated Ku-band Myanmar beam, new Ku-band beams for Indonesia and Mongolia, in addition to two enhanced Ku-band beams serving Australasia and East Asia and a wider high-power C-band coverage across the Asia-Pacific region. The five Ku-band beams onboard AsiaSat 9 are equipped with cross-strap beam switching capability to provide flexible coverage.

Mission Overview



- 3rd ILS Proton Launch in 2017
- 96th ILS Proton Launch Overall
- 5th AsiaSat Satellite Launched on ILS Proton
- **31**st SSL Satellite Launched on ILS Proton

AsiaSat 9

www.ilslaunch.con

Parking Orbit

-60

AsiaSat 9 satellite on board. The first three stages of the Proton will use a standard ascent profile to place the orbital unit (Breeze M upper stage and the AsiaSat 9 satellite) into a sub-orbital trajectory. From this point in the mission, the Breeze M will perform planned mission maneuvers to advance the orbital unit first to a nearly circular parking orbit, then to an intermediate orbit, followed by a transfer orbit, and finally to a geosynchronous transfer orbit. Separation of the AsiaSat 9 satellite is scheduled to occur approximately 9 hours, 13 minutes after lift-off.

Proton History

- Lead designer was Vladimir Chelomei, who designed it with the intention of creating both a powerful rocket for military payloads and a high-performance ICBM. The program was changed, and the rocket was developed exclusively for launching spacecraft.
- First named UR-500, but adopted the name "Proton", which also was the name of the first three payloads launched.
- Proton launched Russian interplanetary missions to the Moon, Venus, Mars, and Halley's Comet.
- Proton launched the Salyut space stations, the Mir core segment and both the Zarya (Dawn) and Zvezda (Star) modules for today's International Space Station.
- First commercial Proton launch 9 April 1996
- First commercial Proton M/Breeze M launch 30 December 2002
- 400th Proton launch 15 December 2014
- 50th year in service in 2015
- KhSC 100 year anniversary 30 April 2016

1st/2nd Stage

Separation

00:02:00

◄ Maximum

Dynamic

Pressure

00:01:02

◆ Command

(100% Thrust)

-00:00:00.9

(40% Thrust)

-00:00:01.75

◄ Ignition Start Sequence

-00:00:02.5

Ascent Profile

Launch Pad

39

Stage 1

■ Stage 1

Ignition

-150 -90 180 -180 -120 -60 60 90 120 150 Longitude (degrees) **Ground Track** Transfer Orbit $H_{p} = 434 \text{ km}$ $H_{s} = 35805 \text{ km}$ $i = 49.2^{\circ}$ Geo-Transfer Orbit (GTO) $H_a = 4045 \text{ km}$ $H_{s}^{p} = 35786 \text{ km}$ i = 23.4° Intermediate Orbit LV Lifto $H_{p} = 270 \text{ km}$ $H_{1}^{P} = 5000 \text{ km}$ i = 50.4° Geostationary Orbit (GSO) Parking Orbit $H_{p} = 168 \text{ km}$ $H_{3}^{p} = 179 \text{ km}$ Flight Design i = 51.6°

termediate Orbi