THE VEHICLE

PROTON HISTORY

- Lead designer was Vladimir Chelomei, who designed it with the intention of creating a powerful rocket for both military payloads and as a highperformance ICBM. The program was changed, and the rocket was developed exclusively for launching spacecraft.
- First named UR-500, but adopted the name "Proton," which also was the name of the first three payloads launched.
- Proton launched Russian interplanetary missions to the Moon, Venus, Mars, and Halley's Comet.
- Proton launched the Salyut space stations, the Mir core segment and both the Zarya and Zvezda modules for today's International Space Station.

17

P

0

T

0

4

First commercial Proton launch— April 9, 1996, ASTRA 1F.

Proton

Description

Total Height 56.2 m (184 ft)

GROSS LIFTOFF WEIGHT

691,272 kg (1,523,565 lbm)

PROPELLANT UDMH and N₂O₄

INITIAL LAUNCH July 16, 1965 Proton-1 Spacecraft

PAYLOAD FAIRINGS

There are multiple payload fairing designs presently qualified for flight, including standard commercial payload fairings developed specifically to meet the needs of our Western customers.

BREEZE M UPPER STAGE

The Breeze M is powered by one pump-fed gimbaled main engine that develops thrust of 19.6 kN (4,400 lbf). The Breeze M is composed of a central core and a jettisonable additional propellant tank. Inert mass of the stage at liftoff is approximately 2,370 kg (5,225 lbm). The quantity of propellant carried is dependent on specific mission requirements and is varied to maximize mission performance. The Breeze M is controlled by a closed loop, triple-redundant guidance system.

PROTON BOOSTER

The Proton booster is 4.1 m (13.5 ft) in diameter along its second and third stages, with a first stage diameter of 7.4 m (24.3 ft). Overall height of the three stages of the Proton booster is 42.3 m (138.8 ft).

Third Stage

Powered by one RD-0213 engine, this stage develops thrust of 583 kN (131,000 lbf), and a four-nozzle vernier engine that produces thrust of 31 kN (6,900 lbf).

Second Stage

Of conventional cylindrical design, this stage is powered by three RD-0210 engines plus one RD-0211 engine and develops a vacuum thrust of 2.3 MN (524,000 lbf).

First Stage

The first stage consists of a central tank containing the oxidizer surrounded by six outboard fuel tanks. Each fuel tank also carries one of the six RD-275 engines that provide first stage power. Total first stage sea-level thrust is approximately 9.5 MN (2,140,000 lbf) with a vacuum-rated level thrust of 10.5 MN (2,360,000 lbf).

The Proton and the Breeze M are built by Khrunichev State Research and Production Space Center.

THE **SATELLITE**

SATELLITE OPERATOR SES AMERICOM www.ses-americom.com

SATELLITE MANUFACTURER

Lockheed Martin Commercial Space Systems www.lmcommercialspace.com

> PLATFORM A2100

SEPARATED MASS 4140 kg

DESIGN LIFE

15 years

MISSION

The AMC-14 satellite was developed and built for SES AMERI-COM, the leading supplier of satellite services in the USA. SES AMERICOM, recognized as a major innovator of advanced satellite communication services, operates a fleet of 15 spacecraft in orbital positions predominantly providing a wide variety of services throughout the Americas.

AMC-14 is an advanced, high-powered Broadcast Satellite Service (BSS) satellite with 32 24-MHz Ku-band transponders, and will operate at 61.5 degrees West longitude. As the third satellite dedicated to AMERICOM2HOME[®], the spacecraft has been optimized to provide direct-to-home video services. The designated mission of AMC-14 is to expand the bandwidth resources needed to increase the number of high-definition and other services offered by the EchoStar Corporation.

www.ilslaunch.com

AMC-14 Mission Overview

- **7th** launch of a satellite for SES AMERICOM on a Proton
- 11th launch of a Lockheed Martin A2100 satellite model on a Proton
- **2nd** ILS launch of 2008
- **45th** launch for ILS joint venture

PROTON M ON PAD 39

ORBIT INSERTION